LeCoPro - Learning Control for Production Machines

نویسندگان

  • G. Pinte
  • W. Symens
  • B. Stallaert
  • J. Swevers
چکیده

Advanced control methods are of vital importance for the machine building industry to enhance the efficiency and flexibility of production machines as traditional controllers have important limitations. Firstly, in many cases it is intricate or even impossible for the designers and operators to optimally tune the parameters of a traditional production machine controller due to the complex nature and the vaguely known dynamics of these machines. Furthermore, traditional control algorithms are not able to track changing system parameters and varying environmental conditions, which often appear in practical situations, and will consequently not adapt the control parameters accordingly. These drawbacks of traditional control algorithms, which result in suboptimal efficiency of the controlled machines, can be solved by the introduction of a learning behaviour in machine controllers. Learning controllers will allow machines to automatically learn the optimal control parameters and adapt to variations in both process parameters and environmental conditions. The LeCoPro project, which is funded by the agency for Innovation by Science and Technology in Flanders, intends to create a knowledge platform in Flanders on learning control strategies for production machines. The consortium includes one research centre (Flanders’ Mechatronics Technology Center) and six research groups from three universities (V.U.B.: COMO research group, Department ELEC; K.U.Leuven: Division PMA, Division MeBioS, Division SCD; U.Gent: SYSTeMS research group). To achieve the project’s objective, two related research tracks are acknowledged: (i) learning control methodologies for complex (sub)systems and (ii) learning control methodologies for decentralized systems. The poster highlights the challenges of the LeCoPro project and discusses the potential of learning control techniques on some development cases: a transmission, a badminton robot and a tractor with an implement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

Performance evaluation of the croissant production line with reparable machines

In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actu...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010